William Querido (wquerido)

William Querido

Assistant Professor

Charles V. Schaefer, Jr. School of Engineering and Science

Department of Biomedical Engineering

Edwin A. Stevens Hall 208

Education

  • PhD (2014) Federal University of Rio de Janeiro (Biophysics)
  • PhD (2014) University of Haute Alsace (Cell Biology)
  • MS (2011) Federal University of Rio de Janeiro (Biophysics)
  • BS (2009) Federal University of the State of Rio de Janeiro (Biomedicine)

Research

- Bones and other mineralized tissues in health and disease
- FTIR spectroscopy and hyperspectral imaging at the microscale
- The role of bone tissue composition on bone biomechanics and fragility
- Machine learning using high-dimensional spectroscopy data
- Bone tissue engineering and bone-biomaterial interfaces

General Information

Tissue biomineralization is remarkably fascinating, resulting in composite materials in which properties of organic molecules and inorganic crystals drive tissue function. Dr. Querido’s research focuses on elucidating bones and other mineralized tissues through the optics of infrared spectroscopy and hyperspectral imaging—which offer excellent tools to investigate a variety of tissues and biomaterials at the chemical and molecular level. In particular, his research aims to reveal how bone compositional and structural properties at the microscale are associated with bone health and mechanical function. This deep dive into the building blocks of tissue quality through innovative approaches may offer a new perspective to improve the clinical diagnosis of skeletal diseases and the design of optimized strategies for tissue regeneration.

Experience

Department of Biomedical Engineering, Stevens Institute of Technology
2024-Present: Assistant Professor, Tenure-Track

Department of Bioengineering, Temple University
2021-2024: Assistant Professor, Research-Track
2020-2021: Adjunct Assistant Professor
2017-2021: Postdoctoral Fellow

Institute of Biomedical Sciences, Federal University of Rio de Janeiro
2015-2016: Postdoctoral Fellow

Grants, Contracts and Funds

NIH/NIAMS, R21
“Multifactorial Contribution of Bone Nanoscale Composition to Tissue Quality in Osteoporosis”, Jan 23 - Nov 24, Role: PI

Pennsylvania Department of Health, CURE
“Sex-Specific Differences in Bone Composition and Relationship to Bone Strength”, May 23 - April 27, Role: PI

Selected Publications

Journal Article

  1. Montoya, C.; Babariya, M.; Ogwo, C.; Querido, W.; Patel, J. S.; Melo, M. A.; Orrego, S. (2025). Synergistic effects of bacteria, enzymes, and cyclic mechanical stresses on the bond strength of composite restorations. Biomaterials Advances (vol. 166, pp. 214049).
    https://www.sciencedirect.com/science/article/pii/S2772950824002929.
  2. Dev, I.; Mehmood, S.; Pleshko, N.; Obeid, I.; Querido, W. (2024). Assessment of submicron bone tissue composition in plastic-embedded samples using optical photothermal infrared (O-PTIR) spectral imaging and machine learning. Journal of Structural Biology: X (pp. 100111).
    https://www.sciencedirect.com/science/article/pii/S2590152424000163.
  3. Reiner, E.; Weston, F.; Pleshko, N.; Querido, W. (2023). Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale.. Applied spectroscopy (11 ed., vol. 77, pp. 1311-1324).
  4. Ohnishi, T.; Tran, V.; Sao, K.; Ramteke, P.; Querido, W.; Barve, R. A.; van de Wetering, K.; Risbud, M. V. (2023). Loss of function mutation in Ank causes aberrant mineralization and acquisition of osteoblast-like-phenotype by the cells of the intervertebral disc.. Cell death & disease (7 ed., vol. 14, pp. 447).
  5. Falcon, J. M.; Kandel, S.; Querido, W.; Morman, J.; Patel, J.; Miller, L. M.; Mauck, R. L.; Pleshko, N. (2022). Near infrared spectroscopic assessment of engineered cartilage for implantation in a pre-clinical model. Journal of Cartilage & Joint Preservation (1 ed., vol. 2, pp. 100038).
    https://www.sciencedirect.com/science/article/pii/S2667254522000014.
  6. Kandel, S.; Querido, W.; Falcon, J. M.; Zlotnick, H. M.; Locke, R. C.; Stoeckl, B.; Patel, J. M.; Patil, C. A.; Mauck, R. L.; Pleshko, N. (2022). In Situ Assessment of Porcine Osteochondral Repair Tissue in the Visible-Near Infrared Spectral Region.. Frontiers in bioengineering and biotechnology (vol. 10, pp. 885369).
  7. Kim, M.; Koyama, E.; Saunders, C. M.; Querido, W.; Pleshko, N.; Pacifici, M. (2022). Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs.. Biology open (6 ed., vol. 11).
  8. Querido, W.; Zouaghi, S.; Padalkar, M.; Morman, J.; Falcon, J.; Kandel, S.; Pleshko, N. (2022). Nondestructive assessment of tissue engineered cartilage based on biochemical markers in cell culture media: application of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy.. The Analyst (8 ed., vol. 147, pp. 1730-1741).
  9. Shanas, N.; Querido, W.; Oswald, J.; Jepsen, K.; Carter, E.; Raggio, C.; Pleshko, N. (2022). Infrared Spectroscopy-Determined Bone Compositional Changes Associated with Anti-Resorptive Treatment of the oim/oim Mouse Model of Osteogenesis Imperfecta.. Applied spectroscopy (4 ed., vol. 76, pp. 416-427).
  10. Falcon, J. M.; Chirman, D.; Veneziale, A.; Morman, J.; Bolten, K.; Kandel, S.; Querido, W.; Freeman, T.; Pleshko, N. (2021). DMOG Negatively Impacts Tissue Engineered Cartilage Development.. Cartilage (2_suppl ed., vol. 13, pp. 722S-733S).
  11. Querido, W.; Kandel, S.; Pleshko, N. (2021). Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.. Molecules (Basel, Switzerland) (4 ed., vol. 26).
  12. Afara, I. O.; Shaikh, R.; Nippolainen, E.; Querido, W.; Torniainen, J.; Sarin, J. K.; Kandel, S.; Pleshko, N.; Töyräs, J. (2021). Characterization of connective tissues using near-infrared spectroscopy and imaging.. Nature protocols (2 ed., vol. 16, pp. 1297-1329).
  13. Ailavajhala, R.; Querido, W.; Rajapakse, C. S.; Pleshko, N. (2020). Near infrared spectroscopic assessment of loosely and tightly bound cortical bone water.. The Analyst (10 ed., vol. 145, pp. 3713-3724).
  14. Kandel, S.; Querido, W.; Falcon, J. M.; Reiners, D. J.; Pleshko, N. (2020). Approaches for In Situ Monitoring of Matrix Development in Hydrogel-Based Engineered Cartilage.. Tissue engineering. Part C, Methods (4 ed., vol. 26, pp. 225-238).
  15. Shanas, N.; Querido, W.; Dumont, A.; Yonko, E.; Carter, E.; Ok, J.; Karchner, J. P.; Barbe, M. F.; Ali, S.; Patil, C.; Raggio, C.; Pleshko, N. (2020). Clinical application of near infrared fiber optic spectroscopy for noninvasive bone assessment.. Journal of biophotonics (4 ed., vol. 13, pp. e201960172).
  16. Querido, W.; Shanas, N.; Bookbinder, S.; Oliveira-Nunes, M. C.; Krynska, B.; Pleshko, N. (2020). Fourier transform infrared spectroscopy of developing bone mineral: from amorphous precursor to mature crystal.. The Analyst (3 ed., vol. 145, pp. 764-776).
  17. Karchner, J. P.; Querido, W.; Kandel, S.; Pleshko, N. (2019). Spatial correlation of native and engineered cartilage components at micron resolution.. Annals of the New York Academy of Sciences (1 ed., vol. 1442, pp. 104-117).
  18. Wischmann, J.; Lenze, F.; Thiel, A.; Bookbinder, S.; Querido, W.; Schmidt, O.; Burgkart, R.; von Eisenhart-Rothe, R.; Richter GHS; Pleshko, N.; Mayer-Kuckuk, P. (2018). Matrix mineralization controls gene expression in osteoblastic cells.. Experimental cell research (1 ed., vol. 372, pp. 25-34).
  19. Querido, W.; Ailavajhala, R.; Padalkar, M.; Pleshko, N. (2018). Validated Approaches for Quantification of Bone Mineral Crystallinity Using Transmission Fourier Transform Infrared (FT-IR), Attenuated Total Reflection (ATR) FT-IR, and Raman Spectroscopy.. Applied spectroscopy (11 ed., vol. 72, pp. 1581-1593).
  20. Jongwattanapisan, P.; Terajima, M.; Miguez, P. A.; Querido, W.; Nagaoka, H.; Sumida, N.; Gurysh, E. G.; Ainslie, K. M.; Pleshko, N.; Perera, L.; Yamauchi, M. (2018). Identification of the effector domain of biglycan that facilitates BMP-2 osteogenic function.. Scientific reports (1 ed., vol. 8, pp. 7022).
  21. Querido, W.; Falcon, J. M.; Kandel, S.; Pleshko, N. (2017). Vibrational spectroscopy and imaging: applications for tissue engineering.. The Analyst (21 ed., vol. 142, pp. 4005-4017).
  22. Oliveira-Nunes, M. C.; Assad Kahn, S.; de Oliveira Barbeitas, A. L.; Spohr, T. C.; Dubois, L. G.; Ventura Matioszek, G. M.; Querido, W.; Campanati, L.; de Brito Neto, J. M.; Lima, F. R.; Moura-Neto, V.; Carneiro, K. (2016). The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastoma multiforme tumorigenesis.. Cancer cell international (vol. 16, pp. 46).
  23. Querido, W.; Rossi, A. L.; Farina, M. (2016). The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches.. Micron (Oxford, England : 1993) (vol. 80, pp. 122-34).
  24. Querido, W.; Farina, M.; Anselme, K. (2015). Strontium ranelate improves the interaction of osteoblastic cells with titanium substrates: Increase in cell proliferation, differentiation and matrix mineralization.. Biomatter (1 ed., vol. 5, pp. e1027847).
  25. Querido, W.; Campos, A. P.; Martins Ferreira, E. H.; San Gil, R. A.; Rossi, A. M.; Farina, M. (2014). Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.. Cell and tissue research (3 ed., vol. 357, pp. 793-801).
  26. Rossi, A. L.; Moldovan, S.; Querido, W.; Rossi, A.; Werckmann, J.; Ersen, O.; Farina, M. (2014). Effect of strontium ranelate on bone mineral: Analysis of nanoscale compositional changes.. Micron (Oxford, England : 1993) (vol. 56, pp. 29-36).
  27. Querido, W.; Farina, M. (2013). Strontium ranelate increases the formation of bone-like mineralized nodules in osteoblast cell cultures and leads to Sr incorporation into the intact nodules.. Cell and tissue research (2 ed., vol. 354, pp. 573-80).
  28. Querido, W.; Rossi, A. L.; Campos, A. P.; Rossi, A. M.; Farina, M. (2013). Does crystallinity of extracted bone mineral increase over storage time?. Materials Research (5 ed., vol. 16, pp. 970–974). ABM, ABC, ABPol.
    https://doi.org/10.1590/S1516-14392013005000096.
  29. Oliveira, J. P.; Querido, W.; Caldas, R. J.; Campos, A. P.; Abraçado, L. G.; Farina, M. (2012). Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate.. Calcified tissue international (3 ed., vol. 91, pp. 186-95).
  30. Querido, W.; Farina, M.; Balduino, A. (2012). Giemsa as a fluorescent dye for mineralizing bone-like nodules in vitro.. Biomedical materials (Bristol, England) (1 ed., vol. 7, pp. 011001).
  31. Rossi, A. L.; Barreto, I. C.; Maciel, W. Q.; Rosa, F. P.; Rocha-Leão, M. H.; Werckmann, J.; Rossi, A. M.; Borojevic, R.; Farina, M. (2012). Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite.. Bone (1 ed., vol. 50, pp. 301-10).
  32. Querido, W.; Abraçado, L. G.; Rossi, A. L.; Campos, A. P.; Rossi, A. M.; San Gil, R. A.; Borojevic, R.; Balduino, A.; Farina, M. (2011). Ultrastructural and mineral phase characterization of the bone-like matrix assembled in F-OST osteoblast cultures.. Calcified tissue international (5 ed., vol. 89, pp. 358-71).
  33. Mello, A.; Hong, Z.; Rossi, A. M.; Luan, L.; Farina, M.; Querido, W.; Eon, J.; Terra, J.; Balasundaram, G.; Webster, T.; Feinerman, A.; Ellis, D. E.; Ketterson, J. B.; Ferreira, C. L. (2007). Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering.. Biomedical materials (Bristol, England) (2 ed., vol. 2, pp. 67-77).