Dynamic Mean-Variance Problem: Recovering Time-Consistency
April 13, 2023 | 5:00 - 6:00 PM | Babbio 2nd Floor Room 219
The dynamic mean-variance problem is a well-studied optimization problem that is known to be time-inconsistent. The main source of time- inconsistency is that the family of conditional variance functionals indexed by time fails to be recursive. We consider the mean-variance problem in a discrete-time setting and study an auxiliary dynamic vector optimization problem whose objective function consists of the conditional mean and conditional second moment.
We show that the vector optimization problem satisfies a set-valued dynamic programming principle and is time-consistent in a generalized sense. Moreover, its weighted sum scalarizations are closely related to the mean-variance problem through simple nonlinear transformations. This is at the cost of using stochastic and time-varying weights in the mean-variance problem. We also discuss the relationship between our results and some recent results in the literature that discuss the use of time-varying weights under special dynamics. Finally, in a finite probability space, we propose a computational procedure that relies on convex vector optimization and convex projection problems, and we use this procedure to calculate time- consistent solutions in concrete market models. Joint work with Seyit Emre Düzoylum (UC Santa Barbara).
__________________________________________________________________________________________
Çağın Ararat is an Assistant Professor in the Department of Industrial Engineering at Bilkent University. He received his BSc degree in 2010 from the same department, followed by a PhD degree in 2015 from the Department of Operations Research and Financial Engineering at Princeton University. His research interests include risk measures, systemic risk, set-valued stochastic analysis and backward stochastic differential equations. During the academic year 2022-2023, he is on sabbatical leave and visiting the Department of Mathematics at the University of Southern California as a Fulbright Scholar.